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Abstract. In a generalized Heisenberg/Schrödinger picture we use an invariant space-time transformation
to describe the motion of a relativistic particle. We discuss the relation with the relativistic mechanics and
find that the propagation of the particle may be defined as space-time transition between states with equal
eigenvalues of the first and second Casimir operators of the Lorentz algebra. In addition we use a vector on
the light-cone. A massive relativistic particle with spin 0 is considered. We also consider the nonrelativistic
limit.

1 Introduction

In this paper we present a new mathematical formalism
for describing the motion of a relativistic particle which
is based on the principal series of the unitary irreducible
representations of the Lorentz group and a generalized
Heisenberg/Schrödinger picture. The principal series of
the representations of the Lorentz group has already been
used by many authors in the theory of elementary particles
and relativistic nuclear physics (e.g., [1–7]). In our previ-
ous papers [8–10] it has been shown that these representa-
tions may be used in a generalized Heisenberg/Schrödinger
picture in which either the analogue of Heisenberg states
or the analogue of Schrödinger operators are independent
of both time and space coordinates t, x. For these states
there must be space-time independent expansion. If at first
we use the momentum representation in the expansion of
the Lorentz group, then the states and operators of the
Poincaré algebra can be constructed in another space-time
independent representation.

In [8] the transition from the Heisenberg to the Schrö-
dinger picture in quantum mechanics S(t) = exp(−itH)
was generalized to the relativistic invariant transformation
(we choose here a system of units such that � = 1, c = 1)

S(x) := exp[−i(tH − x · P)], (1.1)

where H and P are the Hamilton and momentum opera-
tors of the particle in the generalized Schrödinger picture.
Through this transformation the plane waves ∼ exp[−ixp]
appear in different representation and cannot be used in
their original sense as the stationary states of a particle.
There is no x representation. In this approach one must
find a new method for describing the motion of the parti-
cle.
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In the present paper we will show that using the trans-
formation S(x) makes it possible to describe the motion
of a massive relativistic particle in terms of the matrix
elements of the Lorentz group. First we introduce in the
relativistic mechanics the analogue of the operators of the
Lorentz algebra in the generalized Heisenberg picture and
obtain equations which in the invariant form express the
motion of a particle. Then we use these equations and the
unitary irreducible representations of the Lorentz group to
determine the transiton amplitudes for the free relativistic
particle. In particular we consider a massive particle with
spin 0. In the nonrelativistic limit we use the expansion of
the Galileo group.

2 Lorentz algebra
in the generalized Heisenberg picture.
Analogue in relativistic mechanics

In the generalized Heisenberg/Schrödinger picture the
analogue of Schrödinger operators of a particle are defined
as space-time independent operators in different represen-
tations. In the momentum representation (p = momen-
tum, m = mass, p0 :=

√
m2 + p2, s = spin) the boost

and rotation generators of the Lorentz group

N := ip0∇p − s × p
p0 +m

,

J = −ip × ∇p + s := L(p) + s. (2.1)

can be viewed as such operators. Using the transformation
S(x) we obtain the operators of the Lorentz algebra in the
generalized Heisenberg picture

N(x) = S−1(x)NS(x) = N+ tP − xH, (2.2)
J(x) = S−1(x)JS(x) = J − x × P. (2.3)
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Time and space coordinates equally occur in these oper-
ators. From this point of view one can see N(x), J(x) as
field operators which satisfy the equations

∂Ni(x)
∂t

= Pi,
∂Ni(x)
∂xj

= −Hδij , ∂Ji(x)
∂xj

= −εijkPk,

(2.4)
and the commutation rules of the Lorentz algebra

[Ni(x), Nj(x)] = −ıεijkJk(x),
[Ni(x), Jj(x)] = ıεijkNk(x), (2.5)
[Ji(x), Jj(x)] = ıεijkJk(x). (2.6)

For the Casimir operators we have

C1(x) := N2(x)− J2(x), C2(x) := N(x) · J(x). (2.7)

We introduce the field N(x), J(x) in the relativistic me-
chanics and use the same symbols. In the problem which
we discuss one must find the property of the field N(x),
J(x) and the invariant C1(x), C2(x) along the trajectory
of a particle.

Let us write (2.2) and (2.3) in the relativistic mechan-
ics in the form

N(x) = N(t0,x0) + (t− t0)P − (x − x0)H, (2.8)
J(x) = J(t0,x0)− ((x − x0)− (t− t0)P/H)× P, (2.9)

where x0 are the position of the particle on the time t0.
For the trajectoty (xt = x0 + (t− t0)P/H) we have

N+ tP − xtH = N+ t0P − x0H,

J − xt × P = J − x0 × P. (2.10)

In these formulas the quantity N, J are separated from
integrals of the motion t0P−x0H, x0 ×P because the op-
erators N, J in the generalized Heisenberg/Schrödinger
picture correspond to the space-time independent quan-
tity. For two points of the trajectoty we obtain

N(t1,x1) = N(t2,x2), J(t1,x1) = J(t2,x2), (2.11)

and come to the conclusion that

C1(t1,x1) = C1(t2,x2), C2(t1,x1) = C2(t2,x2). (2.12)

These equations represent the motion of a particle from
the point t1,x1 to the point t2,x2 in the invariant form
and may be used in the quantum version.

In connection with (2.10) we make the following re-
marks. The space-time parts in (2.2) and (2.3) have the
structure of the four-tensor of angular momentum of a
particle. If we assume contradictorally to the concept of
the generalized Heisenberg/Schrödinger picture that the
operators N,J in the form

xt = N/H + tP/H, J = xt × P (2.13)

correspond in the relativistic mechanics to integral of the
motion then we arrive at the x representation and

N(t,xt) = 0, J(t,xt) = 0,
C1(t,xt) = 0, C2(t,xt) = 0. (2.14)

In this case the zero on the right-hand side in (2.14) makes
the inverse transition from the relativistic mechanics to
the quantum version impossible.

3 Transition amplitudes

In the quantum version the equations (2.12) correspond
to the transition S(x2 − x1) of the particle from one state
to another state with equal eigenvalues of the operators

C1 = N2 − J2, C2 = N · J. (3.1)

For the principal series the eigenvalues of the operators
C1 and C2 are 1 + α2 − λ2 and αλ, (0 ≤ α < ∞, λ =
−s, ..., s), respectively. The representations (α, λ) and
(−α,−λ) are unitarily equivalent. In the momentum rep-
resentations for a massive particle with spin zero we use
the eigenfunctions of the operators C1

ξ(0)(p, α,n) :=
1

(2π)3/2 [(pn)/m]
−1+iα, (3.2)

here n := (n, n0) is a vector on the light-cone (n2 − n2
0 =

0). These functions were used first in [6] in the space-
time independent expansions of the Lorentz group (n0 =
1,n := (sin θ cosϕ, sin θ sinϕ, cos θ))

Ψ (0)(p) =
∫
α2dα dωn Ψ

(0)(α,n) ξ(0)(p, α,n), (3.3)

Ψ (0)(α,n) =
∫
dp
p0
Ψ (0)(p) ξ∗(0)(p, α,n) (3.4)

where Ψ (0)(p) and Ψ (0)(α,n) are the state functions of the
particle with spin zero in p and in the α,n representation.
The Hamilton operator H(0)(α,n) and momentum oper-
ators P(0)(α,n) were constructed in [3]. The operators N
in the α,n representation have the form ([8–10])

N := αn+ (n × L − L × n)/2, L := L(n). (3.5)

For the particle with spin s

N : = αn+ (n × J − J × n)/2 J := L(n) + s, (3.6)
C1 = 1 + α2 − (s · n)2, C2 = αs · n, (3.7)

[C1,n] = 0, [C2,n] = 0. (3.8)

and as a complete set of commuting operators one can
select the invariants C1, C2 and the vector n.

In the relativistic mechanics we must find the property
of the vector n along the trajectory of the particle. In ac-
cordance with formulas (3.5) in the relativistic mechanics
the quantity N, the field N(x) and the invariant C1(x)
can be expressed in the form

N := αn+ n × L(n), C1 = α2, (3.9)
N(x) := α(x)n(x) + n(x)× L(x),
C1(x) = α2(x). (3.10)

Using (2.11) and (2.12) we obtain

α2(t1,x1) = α2(t2,x2), n(t1,x1) = n(t2,x2). (3.11)

Let |α, λ,n〉 be the states with a well-defined value of
the operator C1,C2 and the vector n. Then in accordance
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with (2.12) and (3.11) for the transition amplitude for
a massive relativistic particle we have the expression in
terms of the matrix elements of the unitary irreducible
representations of the Lorentz group

K(x2;x1, α, λ, n) (3.12)
:= 〈α, λ,n|S(x2 − x1)|n′, λ′, α′〉α,λ,n=α′,λ′,n′ .

For example for a particle with spin zero

K(x2;x1, n) =

(∫
dp
p0
ξ∗(0)(p, α,n)S(x2 − x1)

×ξ0(p, α′,n′)

)
α,λ,n=α′,λ′,n′

=
1

(2π)3

∫
dp
p0

exp−i[(x2 − x1)p]
[(pn)/m]2

. (3.13)

This transition amplitude contain the vector of the light-
cone n. Applying the operator [i(n0∂t+n∇x)/m]2 we have
the relation to the Feynman propagator �+(x) of the free
Klein-Gordon equation

�+(x) =
−i
2
[i(n0∂t + n∇x)/m]2K(x, n), (3.14)

where
�+(x) =

−i
(2π)3

∫
dp
2p0

exp−i[px]. (3.15)

In the nonrelativistic limit in the momentum representa-
tion N → im∇p := q and

ξ(0)(p, α, k) → Ψ(p, αn) :=
1

(2π)3/2 exp[−i(αn) · p/m].
(3.16)

The functions Ψ(p, αn) are the eigenfunctions of the op-
erators q and q2. In [10]) was remarked that in the ex-
pansion of the Galileo group

Ψ(αn) =
1

(2π)3/2

∫
dpΨ(p) exp(iαn · p/m), (3.17)

where Ψ(p) and Ψ(αn) are the states of the particle in p
and in the α,n representation the kernel exp(iαn · p/m)
can be replaced by plane waves exp(ix · p) and in such a
form the x representation in the nonrelativistic limit can
be constructed. It is well known that the transition am-
plitude may be written in this case as 〈x2|S(t2 − t1)|x1〉.
In the relativistic region this method cannot be used. The
functions which realize the unitary irreducible space-time
independent representations of the Lorentz group and of
the Galileo group have different forms.

In the framework of the generalized Heisenberg/
Schrödinger picture for describing the motion of a particle
in the nonrelativistic limit we can use the same method
as in the relativistic case. The operators

q(t,x) = q+ tp − xm,
q(t,x) = q(t0,x0) + (t− t0)p − (x − x0)m, (3.18)

just as N(x) can be viewed as field operators with the
property

∂qi(t,x)/m
∂t

= Pi/m,
∂qi(t,x)/m
∂xj

= −δij . (3.19)

In order to find the transition amplitude we must calculate
the matrix element (H = p2/2m)

K(x2;x1, αn) := 〈αn|S(t2 − t1,x2 − x1)|n′α′〉αn=α′n′

(3.20)
which correspond to the transition S(t2 − t1,x2 − x1) of
the particle between states with equal eigenvalues of the
operator q and q2. Using the functions Ψ(p, αn) we obtain
expression

K(x2;x1, αn) =

(∫
dpΨ∗(p, αn)S(t2 − t1,x2 − x1)

×Ψ(p, α′n′)

)
αn=α′n′ (3.21)

=
[

m

2πı(t− t0)
]3/2

exp
ım(x2 − x1)2

2(t2 − t1) .

which agree with the transition amplitude in quantum me-
chanics.

4 Conclusion

We have shown that the propagation of a relativistic par-
ticle may be described in terms of the transformation
S(x) = exp[−i(tH−x ·P)] and the matrix elements of the
unitary irreducible representations of the Lorentz group.
We have considered the operators of the Lorentz algebra in
the generalized Heisenberg picture as field operators and
found that the analogue of the space-time independent
operators in the relativistic mechanics must be separated
from the integrals of motion. In this case the conversion to
the quantum version can take place. The transition ampli-
tude for a particle with spin zero contain a vector of the
light-cone which appears in the expansions of the Lorentz
group. Finally we have shown that in the nonrelativistic
limit the transition amplitude may be also expressed in
terms of the transformation S(x).
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